skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "HEALEY, VIVIAN OLSIEWSKI"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Given a set$$S=\{x^2+c_1,\dots,x^2+c_s\}$$defined over a field and an infinite sequence$$\gamma$$of elements ofS, one can associate an arboreal representation to$$\gamma$$, generalising the case of iterating a single polynomial. We study the probability that a random sequence$$\gamma$$produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most setsSdefined over$$\mathbb{Z}[t]$$, and we conjecture a similar positive-probability result for suitable sets over$$\mathbb{Q}$$. As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify allSpossessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration. 
    more » « less